Journal of Organometallic Chemistry, 276 (1984) 161–166 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

TRIORGANOTIN ARYL SELENIDES

DOUGLAS W. GRANT and JAMES L. WARDELL*

Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB9 2UE (Great Britain) (Received May 29th, 1984)

Summary

The Sn-Se bond in trimethyltin aryl selenides is cleaved on reaction with selenenyl halides, sulphenyl halides, alkyl halides and allyl halides. Thus $Me_3SnSePh$ reacts with PhSeCl, 4-Me-2-NO₂C₆H₃SCl, RI (R = CH₃ or Ph₃SnCH₂) and CH₂=CHCH₂Br to give PhSeSePh, 4-Me-2-NO₂C₆H₃SSePh, RSePh and CH₂=CHCH₂SePh, respectively. The diselenide, PhSeSePh, is also obtained from Me₃SnSePh on reaction with either 4-MeC₆H₄SO₂Cl or NaIO₄. Exchange reactions also occur between Me₃SnSePh and Ph₃SnCl or PhHgCl.

Introduction

Triorganotin sulphides, R_3SnSR' , have been frequently studied, and many reactions reported [1]. In contrast, the selenide analogues, R_3SnSeR' , have only attracted little attention, as indicated in a recent survey [2]. Relatively few reactions of R_3SnSeR have been studied; among them are those with I_2 [3], Ac_2O [4] and HBr [5]. In all these cases cleavage of the Sn–Se bond occurred:

$$R_{3}SnSeR' \xrightarrow{1_{2}} R_{3}SnI + R'SeSeR'$$
(1)

$$R_{3}SnSeR' \longrightarrow R_{3}SnOAc + AcSeR'$$
(2)

$$R_{3}SnSeR' \xrightarrow{HBr} R_{3}SnBr + HSeR'$$
(3)

In this paper, we wish to report some further reactions and preparations of R_3SnSeR' compounds.

Experimental

....

Areneselenols were gifts from Dr. W. MacFarlane; additional compounds were obtained as required by reaction of Se with aryl-Grignard reagents [6].

Preparation of triorganotin aryl selenides. All preparations were carried out under nitrogen. Equimolar quantities of R_3SnCl and ArSeH were dissolved in CCl_4 and excess Et_3N added. After stirring for 30 minutes at room temperature, the precipitate of Et_3NHCl was filtered off and the filtrate evaporated. The residues were fractionally distilled in vacuo (for trimethyltin derivatives) or recrystallised from ethanol (for the triphenyltin compound).

Trimethyltin phenyl selenide, Me₃SnSePh, b.p. 72° C/0.05 mmHg [lit. [7], 67–69°C/0.001 mmHg). Anal. Found: C, 34.0; H, 4.3; C₉H₁₄SeSn calcd.: C, 33.7; H, 4.4%. ¹H NMR (60 MHz in CCl₄); δ 0.40 (s, 9H, Me₃Sn, $J(^{117,119}Sn^{-1}H)$ 56, 59 Hz); 7.15 (m, 3H, *m*- and *p*-protons of Ph), 7.50 ppm (m, 2H, *o*-protons of Ph).

Trimethyltin p-tolyl selenide, Me₃SnSeC₆H₄Me-p, b.p. 84–85 °C/0.2 mmHg. Anal. Found: C, 36.1; H, 4.7. C₁₀H₁₆SeSn calcd.: C, 36.0; H, 4.8%. ¹H NMR (60 MHz in CCl₄): δ 0.38 (s, 9H, Me₃Sn, $J(^{117,119}Sn^{-1}H)$ 54, 56 Hz); 2.33 (s, 3H, Me), 6.84 (d) and 7.27 (d) ppm (4H, C₆H₄, AB system, J 8 Hz).

Trimethyltin m-tolyl selenide, Me₃SnSeC₆H₄Me-m, b.p. 78-79°C/0.1 mmHg. Anal. Found: C, 36.0; H, 4.7. C₁₀H₁₆SeSn calcd.: C, 36.0; H, 4.8%. ¹H NMR (60 MHz in CCl₄): δ 0.39 (s, 9H, Me₃Sn, $J(^{117,119}Sn^{-1}H)$ 55, 57 Hz), 2.39 (s, 3H, Me), 6.4-7.4 ppm (m, 4H, C₆H₄).

Trimethyltin p-anisyl selenide, Me₃SnSeC₆H₄OMe-*p*, b.p. 105–106 °C/0.05 mmHg. Anal. Found: C, 34.1; H, 4.8. $C_{10}H_{16}$ OSeSn calcd.: C, 34.3; H, 4.6%. ¹H NMR (60 MHz in CCl₄): δ 0.37 (s, 3H, Me₃Sn), $J(^{117,119}Sn^{-1}H)$ 56, 59 Hz), 3.70 (s, 3H, MeO), 6.60 (d) and 7.30 (d) ppm (4H, C₆H₄, AB system, J 8 Hz).

Trimethyltin m-anisyl selenide, Me₃SnSeC₆H₄OMe-*m*, b.p. 110–111°C/0.05 mmHg. Anal. Found: C, 34.6; H, 4.4. $C_{10}H_{16}$ OSeSn calcd.: C, 34.3; H, 4.6%. ¹H NMR (60 MHz in CCl₄): δ 0.41 (s, 9H, Me₃Sn, $J(^{117,119}Sn^{-1}H)$ 54 and 56 Hz), 3.74 (s, 3, MeO), 6.6–7.2 (m, 4H, C₆H₄).

Trimethyltin m-trifluoromethylphenyl selenide, $Me_3SnSeC_6H_4CF_3$ -m, b.p. 70–71°C/0.05 mmHg. Anal. Found: C, 30.9; H, 3.3. $C_{10}H_{13}F_3SeSn$ calcd.: C, 31.0; H, 3.4%. ¹H NMR (60 MHz in CCl₄): δ 0.44 (s, 9H, Me_3Sn , $J(^{117,119}Sn^{-1}H)$ 56, 59 Hz), 7.2–7.8 ppm (m, 4H, C_6H_4).

Triphenyltin p-tolyl selenide, $Ph_3SnSeC_6H_4Me-p$, m.p. 92°C. Anal. Found: C, 57.8; H, 4.1. $C_{25}H_{22}SeSn$ calcd.: C, 57.8; H, 4.3%. ¹H NMR (60 MHz in CCl₄): δ 2.20 (s, 3H, Me), 6.75 (d, 2H, A portion of C_6H_4 AB system, J 8 Hz). 7.0–7.7 ppm (m, 17H, $Ph_3Sn + B$ portion of C_6H_4 AB system).

Reagents. Methyl iodide was shaken with dilute KOH solution, washed well with H_2O , dried over CaCl₂ and redistilled. 4-Methyl-2-nitrobenzenesulphenyl chloride was prepared as published [8]. Phenylmercury chloride, m.p. 253–256 °C [9] and Ph₃SnCH₂I, m.p. 85–86.5 °C [10] were from previous studies. Other reagents were commercial samples.

Reactions

Trimethyltin phenyl selenide and iodine. A solution of iodine (0.508 g, 2 mmol) in CCl_4 was added dropwise to a solution of Me₃SnSePh (0.636 g, 2 mmol). Reaction was rapid and produced Me₃SnI (δ 0.86, $J(^{117,119}Sn^{-1}H)$, 54, 57 Hz) and PhSeSePh [δ 7.22 (m, 4H, *o*-protons), 7.58 ppm (m, 6H, *m*- and *p*-protons)]. Diphenyl diselenide, m.p. 61–62°C (lit. [3] 61°C) was obtained from the reaction mixture by TLC on silica gel.

Triphenyltin phenyl selenide and phenylselenenyl chloride. A solution of PhSeCl

(0.076 g, 0.4 mmol) in CDCl₃ (0.5 ml) was dropped into a solution of Me₃SnSePh (0.128 g, 0.4 mmol) in CCl₄ (0.5 ml). Reaction was immediate with the formation of Me₃SnCl (¹H NMR δ 0.64 ppm) and PhSeSePh; the latter was obtained by TlC on silica gel. It had m.p. 61–63°C.

Trimethyltin phenyl selenide and 4-methyl-2-nitrobenzenesulphenyl chloride. Solutions of Me₃SnSePh (0.636 g, 2 mmol) and 4-Me-2-NO₂C₆H₃SCl (0.407 g, 2 mmol) in CCl₄ were mixed and the reaction mixture stirred. Reaction was complete after 1 h; ¹H NMR spectrum indicated the complete formation of Me₃SnCl (δ 0.64, ppm $J(^{117,119}Sn^{-1}H)$ 54, 57 Hz). Work-up of the reaction mixture by TLC led to isolation of 4-Me-2-NO₂C₆H₃SSePh (0.41 g, 63%), m.p. 84–87 °C. (¹H NMR 100 MHz in CDCl₃, δ 2.38 (s, 3H, Me), 7.2–8.0 ppm (m, 8H, aryl). Anal. Found: C, 48.3; H, 3.6; N, 4.2; S, 10.1. C₁₃H₁₁NO₂SSe calcd.: C, 48.4; H, 3.4; N, 4.3; S, 9.9%) and small quantities of PhSeSePh, m.p. 61°C (¹H NMR 100 MHz in CDCl₃, δ 7.22 (m, 4H, *o*-protons), 7.58 ppm (m, 6H, *m*- and *p*-protons)) and (4-Me-2-NO₂C₆H₃S)₂ (¹H NMR 100 MHz in CDCl₃; δ 2.40 (s, 6H, Me), 7.4–8.1 ppm (m, 6H, aryl)).

Trimethyltin phenyl selenide and methyl iodide. Trimethyltin phenyl selenide (43 mg, 0.135 mmol) was dissolved in methyl iodide (0.3 ml). Formation of Me₃SnI was followed by ¹H NMR spectroscopy over a period of 24 h. Considerable broadening of the Me₃Sn absorptions were noted during the course of the exchange reaction. Evaporation of excess MeI, at the end of the reaction, under reduced pressure at room temperature left a residue containing Me₃SnI (¹H NMR in CDCl₃ δ 0.87) and MeSePh (¹H NMR in CDCl₃: δ 2.34 (s, 3H, Me), 7.1–7.5 ppm (m, 5H, aryl)). The latter was collected as an oil using TLC on silica gel.

Slower reactions occurred between MeI and Me₃SnSePh (1/1 and 2/1 mol ratios) in CDCl₃ solution at room temperature.

Trimethyltin phenyl selenide and iodomethyltriphenyltin. A solution of Me₃SnSePh (0.159 g, 0.5 mmol) and Ph₃SnCH₂I (0.246 g, 0.5 mmol) in CDCl₃ (1 ml) was maintained at 34°C. The reaction was monitored by ¹H NMR; the slow formation (50% reaction after 7 d) of Ph₃SnCH₂SePh (δ (CH₂) 2.87 ppm, J(^{117,119}Sn-¹H) 42, 44 Hz) was indicated. A single broad Me₃Sn signal was observed during the exchange reaction. Removal of most of the solvent and addition of hexane to the residue resulted in the precipitation of Ph₃SnCH₂SePh, 0.18 g, m.p. 100-102°C. Anal. Found: C, 57.9; H, 4.4. C₂₅H₂₂SeSn calcd.: C, 57.7; H, 4.3%.

Trimethyltin phenyl selenide and allyl bromide. A slow reaction occurred between allyl bromide (0.053 g, 0.44 mmol) and Me₃SnSePh (0.139 g, 0.44 mmol) in CDCl₃ (1 ml) at 34°C the formation of allyl selenide was indicated from the ¹H NMR spectrum by comparison with that reported for CH₂=CHCH₂SePh [11]. Allyl phenyl sulphide was collected as an oil from the reaction mixture using TLC on silica gel.

Trimethyltin phenyl selenide and triphenyltin chloride. A solution of Me₃SnSePh (32 mg, 0.1 mmol) and Ph₃SnCl (38.5 mg, 0.1 mmol) was prepared in CDCl₃. Complete exchange occurred as shown by the presence in the ¹H NMR spectrum of absorption of Me₃SnCl (δ 0.65 ppm) and absence of absorptions of Me₃SnSePh (δ 0.40 ppm).

The ¹H NMR spectrum of a solution of Me₃SnSePh and Ph₃SnCl (mol. ratio 2/1) indicated the presence of equivalent quantities of Me₃SnCl and Me₃SnSePh. Both Me₃Sn signals remained sharp and separate.

Trimethyltin phenyl selenide and phenylmercury chloride. A solution of PhHgCl

(31.2 mg, 0.1 mmol) and Me₃SnSePh (32 mg, 0.1 mmol) was made up in CDCl₃. ¹H NMR spectroscopy indicated the complete formation of Me₃SnCl (δ 0.65 ppm) and complete consumption of Me₃SnSePh. On work-up, the initial PhHgSePh product symmetrised to Ph₂Hg and (PhSe)₂Hg.

Trimethyltin phenyl selenide and sodium periodate. A solution of Me₃SnSePh (0.428 g, 1.34 mmol) in dioxane (10 ml) was added to a solution of NalO₄ (0.286 g) in H₂O. After leaving overnight, the white solid was filtered off and the filtrate evaporated under reduced pressure at room temperature. The yellow-coloured residue was chromatographed on thin layers: a yellow product, PhSeSePh, 0.150 g, 71%, m.p. 61-62°C was collected.

Trimethyltin phenyl selenide and p-toluenesulphonyl chloride. (a) A solution of Me₃SnSePh (0.114 g, 0.36 mmol) and p-MeC₆H₄SO₂Cl (0.068 g, 0.36 mmol) was made up in CDCl₃ (1 ml). The ¹H NMR spectrum, after 24 h, reaction, showed a single Me₃Sn absorption (δ 0.58, $J(^{117,119}Sn-^{1}H)$ 59, 62 Hz) and two major Me absorptions (δ 2.24 and 2.30 ppm). Further slow reactions occurred on standing at 34°C. TLC of the reaction mixture (using silica gel with 60-80°C pet. ether as eluant) provided PhSeSePh, yield 0.070 g.

(b) A solution of Me₃SnSePh (0.114 g, 0.36 mmol) and *p*-MeC₆H₄SO₂Cl (0.034 0.18 mmol) was made up in CDCl₃ (1 ml). The ¹H NMR spectrum, after 3 days, showed a single Me₃Sn absorption (δ 0.70 ppm, $J(^{117,119}-^{1}\text{H})$ 63,66 Hz) and one major Me absorption (δ 2.48 ppm) little further change occurred on standing. TLC of the reaction mixture (on silica gel) using pet-ether as eluant provided PhSeSePh m.p. 61°C (yield 0.051 g).

Results and discussion

Previously used methods of preparation of triorganotin selenides, R_3SnSeR' , have included reactions of (i) R_3SnX (X = Cl or Br) and either HSeR' (in the presence of a base [3]), R'SeNa [3,12] or (RSe)₄Al [5], (ii) R_3SnOR'' [4,13] or (R_3Sn)₂O [3] with R'SeH, (iii) $R_3SnNR''_2$ and R'SeH [5,13], (iv) R_3SnNCO and R'SeH [14], (v) R_3SnH and R'SePh [15] and (vi) Ph₄Sn and Se [16]. The first of these methods (Me₃SnCl/R'SeH/NEt₃) was used in this study to produce a number of Me₃SnSeC₆H₄X compounds (X = H, *m*-Me, *p*-Me, *m*-MeO, *p*-MeO and *m*-CF₃). As previously reported for R_3SnSeR' compounds, all the Me₃SnSeC₆H₄X compounds possessed significant stability towards air and water. Some darkening and decomposition of samples, kept in capped bottles, was however noted after several months, the products being (XC₆H₄Se)₂ and (Me₃Sn)₂O. Treatment of Me₃SnSePh with the oxidant NaIO₄ in aqueous dioxane rapidly gave the diselenide, PhSeSePh.

Reactions of a number of electrophiles were studied with $Me_3SnSePh$. Cleavage of the Sn-Se bond was found to occur on reaction with I_2 , selenenyl halides, sulphenyl halides, sulphonyl halides, alkyl iodides or allyl halides, in addition exchange reactions occurred with Ph_3SnCl or PhHgCl.

As shown also by MacMullin and Peach [3] reaction with I_2 leads to the symmetric diselenide, eq. 1. It seemed probable that the course of the reaction proceeded via PhSeI. To confirm that selenenyl halides can cleave Sn-Se bonds, the reaction of PhSeCl was studied with Me₃SnSePh eq. 4. ¹H NMR spectroscopy indicated that immediate and complete reaction occurred at room temperature,

 $PhSeCl + Me_3SnSePh \rightarrow Me_3SnCl + PhSeSePh$

although work-up, using TLC, only led to an isolated yield of PhSeSePh of 70%. The compound, PhSeCl, also reacted quantitatively with other $Me_3SnSeC_6H_4X$ compounds in NMR scale reactions (ca. 0.06 mmol) to give Me_3SnCl and the unsymmetrical diselenides, PhSeSeC₆H₄X, contaminated with much smaller amounts of the two diselenides, PhSeSePh and $XC_6H_4SeSeC_6H_4X$. These latter products probably arise from symmetrization of PhSeSeC₆H₄X, a process previously noted for unsymmetrical diselenides, [6].

Reaction of the sulphenyl halide, 4-Me-2-NO₂C₆H₃SCl, with Me₃SnSePh produced the selenenyl sulphide, eq. 5. This product was particularly readily symmetrised to PhSeSePh and $(4-Me-2-NO_2C_6H_3S)_2$, for example on heating or on standing in solution; however it could be isolated in good yield with care from the reaction mixture. There have been several reports of the ready symmetrization of RSeSR' species [6]. The R₃SnSeR' route to selenenyl sulphides has synthetic potential and is a useful addition to those routes already known [6].

A more complex reaction occurs between p-MeC₆H₄SO₂Cl and Me₃SnSePh. Both 1/1 and 1/2 reactions (p-MeC₆H₄SO₂Cl/Me₃SnSePh) were studied; in each case, the shift in the Me₃Sn signal in the ¹H NMR spectra in CDCl₃ solution (from δ 0.40 to 0.65 ppm) signified reaction. Two major species (approximately 1/1) containing p-MeC₆H₄SO₂ fragments (δ (Me) 2.25 and 2.30 ppm) were present in the solution after 30 h at 34°C when a 1/1 mole ratio of reagents were used; a 1/2 ratio of reagents, however, provided essentially one p-MeC₆H₄SO₂ containing product (δ (Me) 2.35 ppm) *. These findings appear analogous to those observed for Ph₄SDSAr/p-MeC₆H₄SO₂Cl reactions, in which the initial p-MeC₆H₄SO₂SAr product was also reactive [17]; hence eq. 6 and 7 are suggested

$$Me_{3}SnSePh + p-MeC_{6}H_{4}SO_{2}Cl \rightarrow Me_{3}SnCl + PhSeSO_{2}C_{6}H_{4}Me-p$$
(6)

$$Me_{3}SnSePh + PhSeSO_{2}C_{6}H_{4}Me_{-}p \rightarrow Me_{3}SnOS(O)C_{6}H_{4}-p + PhSeSePh$$
(7)

TLC of the products from both the 1/1 and 1/2 reactions led to the isolation of only PhSeSePh. Fong and Kitching have reported the ¹H NMR spectrum of Me₃SnOS(O)C₆H₄Me-*p* in CDCl₃ solution [18] (δ (Me₃Sn) 0.55 ppm (J(¹¹⁹Sn⁻¹H) 70 Hz), δ (Me) 2.40 ppm). The Me₃Sn chemical shift value is a little different from those observed in the ¹H NMR spectra of the *p*-MeC₆H₄SO₂Cl/Me₃SnSePh reaction mixtures; this difference could arise from the presence of other Me₃Sn species (e.g. Me₃SnCl) in the reaction mixtures which give rise to average δ (Me₃Sn) values as a consequence of rapid exchange reactions.

The selenosulphonate, $PhSeSO_2C_6H_4Me_p$ is known; It is a reactive molecule; for example, it decomposes readily in light at room temperature or on heating and it adds readily to alkenes, by a free radical mechanism [19].

(4)

^{*} Further slow reactions occurred in the 1/1 reaction on standing; this included formation of a dimethyltin (IV) compound (δ 1.20 ppm) and of p-MeC₆H₄SO₂Me (δ(Me) 2.92 ppm).

Alkyl iodides (MeI and Ph_3SnCH_2I) and $CH_2=CHCH_2Br$ react slowly with Me₃SnSePh at 34°C in chloroform solution, eq. 8 and 9. During the course of each of these reactions only a broad single Me₃Sn signal was observed in the ¹H NMR

$$Me_{3}SnSePh + RCH_{2}I \rightarrow Me_{3}SnI + RCH_{2}SePh$$
(8)

 $(R = H \text{ or } Ph_3Sn)$

 $Me_{3}SnSePh + CH_{2} = CHCH_{2}Br \rightarrow Me_{3}SnBr + CH_{2} = CHCH_{2}SePh$ (9)

spectrum, indicating a rapid exchange, on the NMR time scale, between Me₃SnX (X = Br or I) and Me₃SnSePh. The reaction between MeI and Me₃SnSePh contrasts with the lack of reaction between MeI and Bu₃SnSePh, as reported by MacMullin and Peach [3].

Complete anion exchange occurs between Me₃SnSePh and Ph₃SnCl or PhHgCl, eq. 10 and 11. The organomercury product of eq. 11 readily undergoes symmetriza-

 $Me_{3}SnSePh + Ph_{3}SnCl \rightarrow Me_{3}SnCl + Ph_{3}SnSePh$ (10)

$$Me_{3}SnSePh + PhHgCl \rightarrow Me_{3}SnCl + PhHgSePh$$
(11)

tion and could not be isolated. In these exchange reactions involving chlorides, two distinct Me₃Sn signals were observed during the exchanges.

References

- 1 H. Schumann and I. Schumann, Organotin Compounds, Part 9. Gmelin Handbook of Inorganic Chemistry, Springer-Verlag, Berlin, 1982.
- 2 H. Schumann and I. Schumann, Organotin Compounds, Part 10, Gmelin Handbook of Inorganic Chemistry, Springer-Verlag, Berlin, 1983.
- 3 E.C. MacMullin and M.E. Peach, J. Organomet. Chem., 52 (1973) 355.
- 4 W.P. Neumann and E. Heymann, Justus Liebigs Ann. Chem., 683 (1965) 11
- 5 J.W. Anderson, G.K. Barker, J.E. Drake and M Rodger, J. Chem. Soc., Dalton Trans., (1973) 1716.
- 6 D.L. Klayman, in D.L. Klayman and W.H.H. Gunther (Eds.), Organic Selenium Compounds, Wiley-Interscience, New York, 1973, Chap. 4.
- 7 E.W. Abel, D.A. Armitage, and D.B. Brady, J. Organomet. Chem., 5 (1966) 130.
- 8 C. Brown and D.R. Hogg, J. Chem. Soc. B, (1968) 1262; T. Zincke and H. Rose, Justus Liebigs Ann. Chem., 406 (1914) 103.
- 9 J.L. Wardell and J. McM. Wigzell, J. Chem. Soc. Dalton Trans., (1982) 2321.
- 10 R.D. Taylor and J.L. Wardell, J. Organomet. Chem, 77 (1974) 311.
- 11 M.R. Binns and R.K. Haynes, J. Org. Chem., 46 (1981) 3790.
- 12 E.W. Abel, B.C. Crosse and G.V. Hutton, J. Chem. Soc. A, (1967) 2014.
- 13 I.A. Vostokov, V.T. Bychkov and Yu.I. Dergunov, J. Gen. Chem. U.S.S.R., (Engl. Transl), 41 (1971) 1578.
- 14 Yu.I. Dergunov and I.A. Vostokov, J. Gen. Chem. U.S.S.R. (Engl. Transl), 42 (1972) 371.
- 15 D.L.J. Clive, G.J. Chittattu, V. Farina, W.A. Kiel, S.M. Menchen, C.G. Russell, A. Singh, C.K. Wong, and N.J. Curtis, J. Am. Chem. Soc., 102 (1980) 4438.
- 16 M. Schmidt and H. Schumann, Chem. Ber., 96 (1963) 780.
- 17 J.L. Wardell and D.W. Grant, J. Organomet. Chem., 198 (1980) 121.
- 18 C.W. Fong and W. Kitching, J. Organomet. Chem., 22 (1970) 95.
- 19 D.H.R. Barton, M.R. Britten-Kelly and D. Ferreira, J. Chem. Soc. Perkin Trans. 1, (1978) 1682; T.G. Back and S. Collins, Tetrahedron Lett., (1980) 2213; J. Org. Chem., 46 (1981) 3249; R.A. Gancarz and J.L. Kice, J. Org. Chem., 46 (1981) 4899.